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1. Introduction

In this note we present a new formulation of the heterotic string in four dimensions. This

formulation can be used to describe compactifications with N = 1 supersymmetry which

do not come from a CY3 compactification and thus cannot be obtained by the usual hybrid

method. The formalism extends the known superspace covariant quantization approaches

to string theory [1] to include the N = 2 heterotic string on backgrounds of the form

K3 × T 2.

Covariant formulations of superstring theories, by definition, depend heavily on our

understanding of the structure of off-shell superspaces. Over the past two decades the lat-

ter have been investigated intensively with varying degrees of success. The main problem

in this field consists of finding a formulation in which the basic constraints defining the

superfield representations can be solved in terms of unconstrained superfields (prepotien-

tials). We have come to learn that this requires the introduction of an infinite number of

auxiliary fields when the number of (real) supercharges exceeds 4. These auxiliary fields

are naturally organized in “harmonics”; they come from an expansion in a parameter which

describes a coordinate on an auxiliary space related to the R-symmetry of the extended

theory. A concrete realization of this is the 4-dimensional, N = 2 harmonic superspace of

Galperin, Ivanov, Kalitzin, Ogievetski, and Sokachev [2] in which the auxiliary parameter is

a zwei-bein on the SU2/U 1 = S2 coset where the SU2 is the N = 2 R-symmetry group. A

second such realization is the projective superspace of Karlhede, Lindström, and Roček [3]

in which the auxiliary parameter is a holomorphic coordinate on the punctured complex

plane C
∗. Although this formulation was constructed independently of the harmonic su-

perspace, it was shown explicitly by Kuzenko how the former is realized as a singular limit

of the latter [4]. This “double puncture” limit has a natural interpretation as dimensional
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reduction in superspace [5] if both formalisms are extended to 5 or 6 dimensions in the

sense that the projective superspace necessarily breaks the Lorentz invariance to SO(3, 1).

In the hybrid formalism for the K3×T 2 compactification of the heterotic N = (2, 0) de-

scription of the superstring we propose here, it is useful to consider the compactification as

the heterotic model on a K3 surface S with N = (1, 0) supersymmetry in the 6-dimensional

target further reduced on a torus T 2. The resulting theory has N = 2 supersymmetry in

the 4-dimensional target M . The natural superspace for describing 6-dimensional theories

with N = (1, 0) supersymmetry is the original harmonic superspace [2] extended by two

dimensions. Further reduction on T 2 puts the theory, through the double puncture limit,

in the projective superspace.1 Therefore, from a geometrical point of view, it is natural

that the heterotic description on K3×T 2 lives in projective superspace. In fact, we will find

that similarly to the 6-dimensional type II description on K3 constructed by Berkovits [7],

the hybrid will in our case also provide a natural candidate for the projective parameter.

Contrary to that case, however, our projective parameter will have a (partially) geometric

interpretation, being related to the RNS fermion of the torus T 2. Also, a geometric relation

between the pure spinor formalism and harmonic superspace was found in [21].

Perhaps it is prudent to emphasize that, although the formalism will display many

similarities with the construction given by Berkovits in [7], the present construction is not

directly related to the latter by compactification. This will become clear below, where

we will see that the projective constraint introduced here cannot be obtained from that

in [7]. Indeed, the two formalisms should only be related insofar as the 6-dimensional

formalism reduces to the standard hybrid after a further compactification breaking half of

the 16 supercharges. The relation should then follow from string-string duality mapping

the heterotic description on K3×T 2 to the type II description on an K3-fibered Calabi-Yau.

This note is organized as follows. In section 2 we introduce the conformal field theory

for the heterotic string compactified on K3 × T 2 and discuss its worldsheet symmetries

and constraints. Section 3 is dedicated to deriving the physical vertex operators from

these constraints, of which there are two types. We consider the two cases in turn in sub-

sections 3.1 and 3.2. We conclude this section with a summary of the massless spectrum

in projective superspace. In section 4, we find the explicit realization by the hybrid for-

malism of Siegel’s proposal for the conformal supergravity prepotential of heterotic N = 2

superspace supergravity [8] and reproduce the super-dilaton (compensator) structure of

this theory. Due to Siegel’s work, we can immediately write down the gravitational and

gauge part of the effective action as it follows from the anomaly cancellation mechanism.

Similarly, the gravitational couplings to the supermoduli follow from superspace rules. We

conclude in section 5 with examples of applications of our results, an interesting one of

which constitutes the first closed string field theory with N = 2 target space supersymme-

try.

1The 4-dimensional, N = 2 harmonic superspace was extended to 5 dimensions and reduced to projective

superspace in detail in [5]. Aspects of the extension of the projective formalism to 6 dimensions were

investigated in [6].
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2. Hybrid formalism on K3 × T
2

In this section we propose a hybrid formalism for the K3 × T 2 compactification of the

heterotic N = (2, 0) description of the superstring. The action of the heterotic string with

N = (2, 0) worldsheet supersymmetry with a target space M × K3 × T 2 is given by

S =

∫

d2z
[

∂xm∂̄xm + pα∂̄θα + p̂α∂̄θ̂α + p̄α̇∂̄θ̄α̇ + ˆ̄p
α̇
∂̄ˆ̄θα̇ − ∂ρ∂̄ρ

+λa∂λa + b̄∂c̄
]

+ SK3×T 2 . (2.1)

Here a = 1, . . . , 28 labels what is left of the 32 right-moving, real, chiral fermions making up

the root lattice of the heterotic rank 16, 496-dimensional gauge group G after we subtract

2 complex dimensions for the right-moving K3 fermions necessary for anomaly cancelation.

The fermionic fields (b̄, c̄) are the usual right-moving conformal ghosts. The first line

corresponds to usual Green-Schwarz part. The second describes the 28 right-moving chiral

fermions and the lagrangian for the K3 × T 2.

The construction of the K3 × T 2 σ-model proceeds exactly as that for the Calabi-

Yau [9]. The super-K3 coordinates are given by two N = (2, 0) worldsheet chiral superfields

Y i = yi + κ+Ψi + . . . and Ȳ ı̄ = ȳı̄ + κ−Ψ̄ı̄ + . . . The coordinate of the super-torus will

be denoted by X = x + κ+ψ + . . . and X̄ = x̄ + κ−ψ̄ + . . . and the heterotic fermions

ΛA = λA + . . . with A = 1, 2. The action is

SK3×T 2 =

∫

dzdz̄dκ+dκ−
[

∂iK∂̄Y i − ∂ı̄K∂̄Ȳ ı̄ + Λ̄Ā(eV )ĀBΛB + X̄∂̄X − X∂̄X̄
]

. (2.2)

where K[Y, Ȳ ] is the Kähler potential for K3 and VĀB is the vector bundle background for

the heterotic fermions. In writing the σ-model (2.2) we have used the fact that the torus

is flat to set the U1 part of the gauge connection to zero.

The RNS fermion on the torus ψ is bosonized as ψ = eσ and has conformal weight

(1
2 , 0). The formalism requires a time-like chiral boson ρ. The exponential eρ has conformal

weight (−1
2 , 0). The action excluding the K3 factor is free and gives2

xmxn ∼ ηmn log |z|2 , pαθβ ∼ 1

z
δβ
α , ρρ ∼ − log z,

σσ ∼ log z , xx̄ ∼ log |z|2 , λaλb ∼ 1

z̄
δab,

(2.3)

for the OPEs of the worldsheet fields.

The right-moving worldsheet stress-energy is

T̄ = ∂̄xm∂̄xm + ∂̄x∂̄x̄ + λa∂̄λa + c̄∂̄b̄ + 2∂̄c̄b̄ + T̄K3 . (2.4)

On the other hand, the left-moving symmetry is the N = (2, 0) superconformal algebra and

consists of the tensors {J,G±, T} which are required to generate the familiar N = 2 algebra,

2As usual, the chirality of ρ is understood to be imposed by hand.
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which we will now construct. Following the establishment of the covariant 6-dimensional

formalism [7], we introduce the projective constraints

∇α = ζdα − d̂α = 0 , ∇̄α̇ = −1

ζ
d̄α̇ − ˆ̄dα̇ = 0 , ζ = eρ−σ . (2.5)

Note that the chiral boson ρ and the bosonized RNS fermion are essential in the construc-

tion. The covariant Siegel derivatives [10] are shifted compared to the hybrid formalism

dα → dα+ 1
2 θ̂α∂x+. . . to include terms necessary to form the centrally extended superspace

algebra

dα(z)d̄α̇(0) ∼ i

z
Παα̇ , dα(z)d̂β(0) ∼ 1

z
εαβ π̄,

d̂α(z)ˆ̄dα̇(0) ∼ i

z
Παα̇ , d̄α̇(z)ˆ̄d

β̇
(0) ∼ 1

z
ε
α̇β̇

π,

dα(z)Π
ββ̇

(0) ∼ i

z
εαβ∂θ̄

β̇
, dα(z)π ∼ 1

z
∂θ̂α,

d̂α(z)Π
ββ̇

(0) ∼ i

z
εαβ∂ˆ̄θ

β̇
, d̂α(z)π ∼ −1

z
∂θα,

Πm(z)Πn(0) ∼ 1

z2
ηmn , π̄(z)π(0) ∼ 1

z2
.

(2.6)

All other OPEs vanish or are related to these by conjugation. The 4-dimensional covariant

momenta are defined as

Παα̇ = ∂xαα̇ +
i

2

(

θα

↔

∂ θ̄α̇ + θ̂α

↔

∂ ˆ̄θα̇

)

,

π̄ = ∂x +
1

2
ˆ̄θα̇

↔

∂ θ̄α̇ ,

π = ∂x̄ +
1

2
θ̂α

↔

∂ θα . (2.7)

The projective constraints (2.5) are required to commute with the N = 2 generators

and can be used to gauge-fix (θ̂, ˆ̄θ) → 0. The N = 2 constraints should reduce in this gauge

to the familiar covariant hybrid constraints. Alternatively, setting (∇, ∇̄) → 0 reduces the

constraints to their O(2)-symmetric form [7] c.f. equation (2.8). The generators satisfying

these two requirements are given by3

T =
1

2
Παα̇Παα̇+dα

(

∂θα+ζ∂θ̂α

)

+d̄α̇

(

∂θ̄α̇− 1

ζ
∂ˆ̄θ

α̇
)

− 1

2
∂ρ∂ρ+π̄π+

1

2
∂σ∂σ+TK3 ,

G+ = eρd2 + eσπ̄ + G+
K3 ,

G− = e−ρd̄2 + e−σπ + G−
K3 ,

J = −∂(ρ − σ) + JK3 . (2.9)

3Another useful form is

T =
1

2
Παα̇Παα̇ + d

α
∂θα + d̂

α
∂θ̂α + d̄α̇∂θ̄

α̇ + ˆ̄dα̇∂ˆ̄θα̇
−

1

2
∂ρ∂ρ

+π̄π +
1

2
ψ̄

↔

∂ ψ + ∇
α
∂θ̂α + ∇̄α̇∂ˆ̄θα̇ + TK3 . (2.8)

The limit ∇ → 0 gives the O(2) symmetric stress tensor.
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In the gauge θ̂, ˆ̄θ = 0 the N = 2 constraints (2.9) reduce to the familiar four-dimensional

hybrid constraints which commute with the Siegel supercharges extended by

qα → qα −
∮

θ̂απ , q̄α̇ → q̄α̇ −
∮

ˆ̄θα̇π̄ ,

q̂α → q̂α −
∮

θαπ , ˆ̄qα̇ → ˆ̄qα̇ −
∮

θ̄α̇π̄ . (2.10)

Note that

Tcomp = TK3 + π̄π +
1

2
ψ̄

↔

∂ ψ , Jcomp = JK3 + ψψ̄,

G+
comp = G+

K3 + ψπ̄ , G−
comp = G−

K3 + ψ̄π,
(2.11)

forms an N = (2, 0) superconformal algebra with c = 9. In the 6-dimensional case [7],

Lorentz invariance requires that G+ be of order 4 in d while G− is of order 0. There

the fact that G+ commutes with the projective constraint was attributed to the fact that

it could be shown to be itself proportional to the fourth power of the constraint G+ ∝
∇(∇(∇(∇(e−2ρ+3σ))))(note that ∇, ρ and σ have different definitions in [7]). By contrast,

in the case of dimension 4, d2 and d̄2 are separately Lorentz invariant which allows the

constraint algebra (2.9) to take a symmetric form. It should therefore not be surprising

that we find

G+ = −1

2
εαβ∇α

(

∇β

(

e−ρ+2σ
))

, G− = −1

2
εα̇β̇∇̄α̇

(

∇̄β̇

(

eρ−2σ
)

)

, (2.12)

in analogy with the 6-dimensional case. This observation will be useful in the construction

of vertex operators in section 3.2.

3. Vertex operators

A general real (irreducible) integrated vertex operator V in a background of the product

form M × K3 factorizes in the absence of flux as

∫

dµU(x, θ, θ̄, θ̂, ˆ̄θ; ζ)O . (3.1)

Here dµ denotes the world-sheet supermeasure, U is a 6-dimensional space-time superfield,

that is, a function of the {xm, x, x̄, θ, θ̄, θ̂, ˆ̄θ} 0-modes, and O = OL ⊗OR is an operator in

the conformal field theory. The vertex operator (3.1) is required to satisfy the following

conditions: It

1. has no poles with J ,

2. commutes with the projective constraints (2.5),

3. is world-sheet supersymmetric, and

4. has conformal weight (0, 0).
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Condition 1 means that U depends on the chiral scalars ρ and σ only in the combination

ζ and is therefore a general power series in the latter. This condition, together with

requirement 2 is the definition of a general projective superfield c.f. sections 3.1 and 3.2.4

Condition 3 can be met by writing either
∫

dµ =
∫

dzdz̄dκ+dκ− with a general worldsheet

superfield as integrand or
∫

dµ =
∫

dzdz̄dκ+ (or its conjugate) with a worldsheet (anti-

)chiral one. We then interpret
∫

dκ+UO = G+(UO),
∫

dκ−UO = G−(UO), et cetera. As

usual, the worldsheet chiral measures require worldsheet chiral integrands in order for the

integrated vertex operators to be supersymmetric while the integrand in the case of the

full measure is real but otherwise unconstrained. Finally, condition 4 is really a condition

on the operator O since U depends only on ζ and the 0-modes of worldsheet fields.

Let us start by considering the full measure. Condition 4 implies that O has conformal

weight (0, 1), implying that OL = 1 and OR ∈ {∂̄xm, ∂̄x, ∂̄x̄, jI}. Then the vertex opera-

tor reduces to G+ (G− (UO)) = G+ (G− (U))O. The most general unconstrained vertex

operator is therefore of the form

∫

dzdz̄
∑

v

G−
(

G+ (Uv)
)

Ov (3.2)

where the sum runs over v with Om = ∂̄xm, OI = jI , Ox = ∂̄x and Ox̄ = ∂̄x̄. These opera-

tors are independent of the compactification manifold and we elaborate on their structure

in subsection 3.1. The projective superfields Uv have arbitrary analytic dependence on

ζ and represent the supergravity and the gauge part of spectrum. Note that we did not

include operators of the form ∂̄θα since they vanish on shell.

The construction of (anti)chiral operators is analogous. In this case we have
∫

dκ+ΦO = G+(ΦO) and the conformal weight of O is (1
2 , 1). As above, we are assum-

ing that Φ depends on chargeless weight zero worldsheet fields {xm, x, x̄, θ, θ̄, θ̂, ˆ̄θ, ζ} and

commutes with the projective constraints. In this case O has to have charge −1, which

means that the left-moving part depends on Ψ̄ı̄. Worldsheet supersymmetry requires that

G−(ΦO) = 0. In the spacetime part, by the relation (2.12) between the projective con-

straint and the G− operator and the condition that Φ commutes with (2.5), we find that Φ

must have no poles with eρ−2σ. This, in turn, implies that it has no negative powers of ζ.5

Such analytic projective superfields Φ =
∑

n≥0 ζnΦn are called “arctic”. The compactifica-

tion dependent supermodulons are of this type and we will return to them in section 3.2.

For the operator O, chirality implies that G−
K3(O) = 0 and, furthermore, should be in the

cohomology of G−
K3 to avoid pure gauge deformations. The supermodulus vertex operator

is therefore of the form

∫

dzdz̄
∑

ω

G+ (ΦωOω) (3.3)

4In particular, ζ plays the role of the projective superspace harmonic and is related to the RNS torus

fermion by ζ = eρψ̄. In this sense, the projective parameter has a geometric interpretation — almost.
5This is precisely the mechanism by which the 6-dimensional type II hybrid string description gives rise

to chiral and twisted-chiral superfields [7].
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where the sum runs over the cohomology of G−
K3, Oω is the operator representing the

cohomology class and Φω is an arctic modulus field. We now turn to a more detailed

description of this general setup.

3.1 Compactification independent vertex operators

As we have just derived, the compactification independent vertex operators (3.2) are all of

the form G−(G+(U)) times a current 1⊗OR. The superfield U(x, θ, θ̄, θ̂, ˆ̄θ, ζ) satisfies the

projective constraint

∇αU = 0 , ∇̄α̇U = 0 . (3.4)

A superfield U holomorphic in an auxiliary variable ζ and satisfying this condition is called

projective [3]. Projective superfields can be expanded in harmonics as

U =
∞
∑

n=−∞

ζnUn(x, θ, θ̄, θ̂, ˆ̄θ) (3.5)

where the Un are ordinary N = 2 superfields. The projective superspace is an extension

of O(2) superspace by an auxiliary complex projective line CP 1 parameterized (in the

northern patch) by ζ. Superspace conjugation extends naturally to projective superspace by

the antipodal map on the projective sphere. In coordinates it is defined to act as ζ 7→ −1/ζ

and superspace conjugation on the rest. If U is real with respect to this operation, this

implies U−n = (−)nŪn. Such a projective superfield is called tropical.

The projective constraints (3.4) can be used together with the harmonic expansion (3.5)

to hide the dependence of the coefficient fields Un on (θ̂, ˆ̄θ) since they imply, for example,

D̂αUn = DαUn+1. In this sense, we may think of projective superfields as N = 1 multiplets

with ‘manifest’ N = 2 supersymmetry and we will do so in what follows.

The operator G−(G+(U)) is invariant under the linearized transformation

δU = Λ(ζ) + Λ̄(ζ) , (3.6)

where Λ is a projective superfield defined such that it has no simple pole with the G−

constraint. This implies in particular that it does not depend on negative powers of ζ. The

projective superfield Λ =
∑∞

n=0 ζnΛn is called arctic and its projective conjugate is called

antarctic. The projective constraint implies that the lowest components Λ0 and Λ1 of the

arctic superfield are constrained in the N = 1 sense. Specifically,

D̄α̇Λ0 = 0 , D̄2Λ1 = ∂Λ0 , (3.7)

in the presence of central charges ∂ (extra dimensions).6 In N = 1 notation, the gauge

transformations take the expected form

δU0 = Λ0 + Λ̄0 , δU1 = Λ1 . (3.8)

6The second condition is equivalent to the projective equation
H

dζ

ζ

“

− 1

ζ
D̄2 + ∂

”

Λ = 0. This is the

projective superspace analogue of the statement that Λ has no simple pole with G−. We should also

mention that starting with an arctic field Λ and setting Λn = 0∀n ≥ 2, the second constraint (3.7) is

strengthened to DαΛ1 = 0.

– 7 –
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We will return to multiplets of this type in subsection 3.2.

The integrated vertex operator
∫

dzdz̄G−(G+(U)) can be expanded over worldsheet

fields as [10]7

V =

∫

dzdz̄
(

ΠmAm + πA + π̄Ā + ∂θαΓα + ∂θ̄α̇Γ̄α̇

+dαW α + d̄α̇W̄α̇ + ζdαZα − 1

ζ
d̄α̇Z̄α̇

)

, (3.9)

with gauge covariant potentials

Am = (σm)αα̇
[

Dα, D̄α̇

]

U0 , A = D̄2U1 + ∂U0 , Γα = DαU0 , (3.10)

and field strengths

Wα = D̄2DαU0 , Zα = DαA . (3.11)

Note that the N = 1 constraints (3.7) and gauge transformations (3.8) together imply that

Wα and Zα are invariant and that δAm = ∂mα and δA = ∂α for α proportional to the

imaginary part of the lowest component of Λ0.

The “left-moving” vertex operator (3.5) needs to be completed by the right-moving

currents ∂̄xm, ∂̄x, ∂̄x̄ and the gauge currents jI . As usual in the hybrid formalism, un-

integrated vertex operators correspond to superspace prepotentials yielding, respectively,

the conformal supergravity prepotential Um, a complex vector prepotential A + iB com-

ing from the torus, and the super-Yang-Mills prepotential {VI}381
I=1 all with N = (1, 0)

supersymmetry in 6 dimensions.

3.2 Compactification dependent vertex operators

The second type of vertex operator is chiral on the worldsheet. The integrated form of this

operator (3.3) uses an arctic superfield Φ =
∑∞

n=0 ζnΦn with the lowest components Φ0

and Φ1 obeying N = 1-type constraints (3.7). This multiplet is the projective superspace

version of a hypermultiplet. We pause here to elaborate a bit on this point.

What is traditionally referred to as a hypermultiplet H decomposes under N = 2 → 1

into a chiral field q1 and an antichiral field q2 forming a doublet under the SU2 R-symmetry.

In 4-dimensional, N = 1 superspace a chiral field Φ is Poincaré dual to a complex linear

field (also known as the non-minimal scalar multiplet) Γ̄ in the sense that the constraint of

Φ is the equation of motion of Γ̄ and vice versa. Indeed, complex linear fields obey D̄2Γ = 0

7The original proposal for the 6-dimensional open superstring vertex operator [11, 7] was of the same

form as the one proposed here (3.9). It was later argued [12] that one must include terms of the form
R

(uγmnv)Fmn where u is the ghost for the projective constraint and v is its momentum. This was necessary

because the 6-dimensional Lorentz generator is of the form Mmn = θγmnp + uγmnv where the ghost part

is needed to produce the correct numerical coefficient in the double pole of MM (Lorentz invariance). It

was also pointed out that this term is unnecessary in 4 dimensions since there θγmnp already produces the

correct pole structure. The hybrid formalism for the heterotic string presented here does not have manifest 6-

dimensional Lorentz symmetry and therefore does not require the ghost correction to the Lorentz generator

or the open string vertex operator.
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off-shell, which would have been the equation of motion had Γ been a free chiral field. In

the presence of central charge, this constraint is modified to D̄2Γ = ∂Φ which exactly

reproduces the constraints (3.7) on the first two components of an arctic field. The precise

statement is, therefore, that an arctic field Φ is the off-shell extension of a half-dualized

hypermultiplet. Alternatively, a hypermultiplet is an on-shell arctic field in which all the

auxiliary components have been integrated out (see footnote 6).

We see, then, that in this formulation the supermoduli do not appear naturally as

hypermultiplets but as off-shell extensions of chiral-non-minimal multiplets [13]. In order

to use the power of the quaternionic-Kähler structure of the hypermultiplet moduli space,

we must first integrate out the infinite number of auxiliary superfields which puts some of

the supersymmetry on-shell and then perform a duality transformation.

In the large radius limit, G−
K3 ∼ dȳı̄∂/∂ȳı̄ becomes the Dolbeault operator so the

compactification dependent spectrum consists of artic superfields coupling to operators in

the cohomology of (0, 1)-forms ω•
ı̄ taking values in various vector bundles over K3 [14]. The

choice of the tangent space corresponds to the choice of right moving part of the operator O.

There are only three choices that give a non-empty cohomology. First there is ωk̄
ı̄ coupling

to ∂̄yk, which gives the 20 artic modulus multiplets. We also have deformations of the

vector bundle, described by ωAB̄
ı̄ , coupling to λAλ̄B̄ which gives 45 artic multiplets. Finally

we have ω
(A,s)
ı̄ , where (A, s) denotes the (2,56)-dimensional representation of SU(2)×E7,

coupling to currents jA,s constructed from 16 of the original 32 heterotic fermions. Putting

all of this together, we obtain a more explicit form for the vertex operator (3.3)

V =

∫

dzdz̄
∑

ω•

G+
(

Φω•

Ωω•(y)
)

, (3.12)

where Ωω• denotes the operator corresponding to the representative ω• of the cohomology

group and Φω•

is the spacetime field dual to it. Of course, all of these operators come with

their complex conjugates.

Spectrum. Let us summarize the spectrum of the heterotic K3×T 2 vacuum as it follows

from the analysis above. The complete list of tropical fields is

Um ⊕ A⊕ B⊕ {VI}381
I=1 (3.13)

with the index I running over the adjoint representation of E7 × E8. The gravitational

prepotential contains two U 1 gauge fields, one of which is the graviphoton and the other

sits in a vector-tensor multiplet [15] which contains the B-field and the dilaton φ. After

dualizing the B-field into an axion a these scalars are often grouped into a complex scalar

S ∼ eφ + ia. Two more gauge fields sit in the complex field A+ iB which also contains four

real scalars, the vacuum expectation values of which parameterize the T 2 moduli. They

are usually grouped into the complex fields T ∼ √
γ + iβ and U ∼ (

√
γ − iγ12)/γ11 where

γ and β denote the metric and B-field on the torus. Overall the gauge group is therefore

E8 × E7 × U14.

The supermodulon spectrum is given in terms of arctic fields as

{Υn}20
n=1 ⊕ {Φ1

n}45
n=1 ⊕ {Φ56

n }10
n=1 (3.14)

– 9 –



J
H
E
P
0
3
(
2
0
0
7
)
0
8
2

Here the Υs are the gauge group singlets coming from the moduli of the K3. They couple to

the forms in H1,0
∂̄

(TS) ∼= H1,1
∂̄

(S) and there are 20 such forms. The Φs come from the gauge

bundle moduli. With the standard embedding E8 ⊃ SU(2)×E7 the adjoint representation

decomposes as 248 → (1,133) ⊕ (3,1) ⊕ (2,56). The first term is carried by VI above.

The second is a singlet under E7, valued in the adjoint representation of SU(2). The arctic

field Φ1 couples to the forms in H1,0
∂̄

(EndTS), the dimension of which is 45. Finally, there

are 10 (quaternionic) moduli carried by Φ56 valued in the 56-dimensional representation

of E7.

Equations (3.13) and (3.14) constitute the spectrum of the heterotic K3× T 2 vacuum

written in a compact and manifestly symmetric form via projective superspace. It is easy

to see that the known component spectrum [15] is reproduced exactly.

4. Supergravity

The 4-dimensional, N = 2 gravitational multiplet Um deserves some elaboration. The ex-

istence of this theory was predicted by Siegel in [8] where it is shown that the gravitational

prepotential Um with gauge transformation8 δUm = Λm + Λ̄m + ∂mL represents the irre-

ducible conformal supergravity multiplet off-shell. (Actually, Siegel presents this formalism

in harmonic superspace which needs to be converted to projective language using Kuzenko’s

method [4].) On-shell, this multiplet becomes reducible, factorizing into a supergravity mul-

tiplet with bosonic components (hmn, Am) and a vector-tensor multiplet (bmn, A′
m, φ). This

theory is non-standard in the sense that usually the conformal supergravity multiplet is

reducible off-shell but irreducible on-shell.

In order to write down the supergravity action and coupling to matter we have to know

the compensator superfield appropriate for this description. In [8], Siegel argued, based on

superspace methods, that there is only one compensator, that it is given by the sum of an

arctic field Σ and its conjugate G = Σ + Σ̄, and that the low-energy supergravity action

in the absence of matter is given by

S =

∮

dζ

ζ

∫

d6xd4θE−1G2 (4.1)

with E = sdet
(

EA
M

)

the super-viel-bein determinant.

From the worldsheet point of view, the compensator is the space-time field that couples

to the worldsheet curvature. Since in the present case we have N = (2, 0) supersymmetry,

the curvature is described by a chiral worldsheet superfield r+ and its complex conjugate

r− defined from worldsheet covariant derivatives (D, D̄,D+,D−) as [D,D+] = r+(M + iJ)

and [D,D−] = r−(M−iJ), where (M,J) are Lorenz and U(1) generators on the worldsheet.

The coupling to the compensator is given by
∫

d2z
(

G+(r+Σ) + G−(r−Σ̄)
)

. (4.2)

By the same analysis as in the vertex operator discussion above, these worldsheet fields

can only couple in a consistent way to arctic and antarctic spacetime fields.

8The second term, relative to those in equation (3.6), comes from the right-moving part.
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The supergeometrical origin of this theory is remarkable. Supergravitational theories

can be constructed from any superfield representation of the super-Poincaré group as fol-

lows [16]: Pick a superfield ϕ which contains a scalar at the component level. Construct an

action from this field which is invariant under rigid scale transformations but which has

the wrong sign kinetic term. Finally, gauge the rigid scale transformations. This will be a

theory of supergravity with compensator ϕ. In the case of old-minimal supergravity, the

conformal compensator is a 4|1-dimensional chiral field. However, there is an extremely

simple way to lift such theories to 4|2 (or 6|1) dimensions [13]: one simply replaces the

chiral field Φ → Φ(ζ) = Φ+ζΓ+ . . . with an arctic superfield. It therefore appears that the

formulation of N = 2 supergravity produced by the heterotic superstring on K3×T 2 is the

näıve projective extension of old-minimal supergravity. Unfortunately, as of this writing,

the full supergravity theory has not been worked out. Nevertheless, knowing the compen-

sator structure and the supergravity prepotential, we can guess much of the structure from

its N = 1 old-minimal analogue.

The vector multiplets coming from the coupling to the right-moving currents can be

included by the anomaly cancellation mechanism: We replace in the action [8]

G → G̃ = G + cLΩL + cYMΩYM (4.3)

where the Ωρ are Chern-Simons 3-forms for super-Lorentz (ρ = L) and the super-Yang-

Mills connections (ρ = YM). They are defined to satisfy that the projective integrals
∮ dζ

ζ

(

−1
ζ
D̄2 + ∂

)

Ωρ = Aρ are the gravitational/gauge anomaly 4-forms. Explicitly AL =

WαβW αβ is the square of the Weyl tensor and AYM =
∑381

I=1 W IW I is the square of the

Yang-Mills field strength. The constants cρ are determined by the compactification and

gauge bundles.

5. Outlook

In this article we have put advanced a covariant description of the heterotic string with

manifest 4|2-dimensional space-time supersymmetry. We have attempted to show that such

a description succinctly represents compactifications of the heterotic string on manifolds

of the form K3 × T 2 by considering explicitly the case of the E8 ⊕ E8 gauge algebra. In

the process, we have found that the N = (2, 0) worldsheet supersymmetry naturally favors

projective superspace targets. The resulting description of supergravity is non-standard

and, unfortunately, has not been worked out in any detail as of this writing. Further work

in this direction has the potential to shed light on the relation to recent advances in our

understanding of the type II hypermultiplet moduli space [17] to which it is related by

string-string duality. In the latter case, the analogue of the special geometry prepotential

is formulated in projective superspace in terms of tensor multiplets which arise naturally

in the construction from the c-map (T-duality). By contrast, the projective superspace de-

scription of the heterotic string never mentions the tensor multiplet representation, favoring

instead the arctic description of its dual, the hypermultiplet.

Hybrid formulations of superstring theories of the type presented here have become

somewhat numerous over the past 10 years. In each case (as here) a formulation has been
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developed to address various questions in a specific vacuum. Although these hybrid strings

have been checked to varying degrees to be related to the universal RNS formulation by

field redefinitions, it is has become clear that they should be related to one another in a

more direct way. Understanding these relations is tantamount to having a more explicit

realization of the dualities between them. For example, relating the formalism presented

here to the dual type II hybrid description of the superstring on Calabi-Yau 3-folds should

involve explicitly the famous relation between holomorphic vector bundles over K3 surfaces

and K3- and elliptically-fibred Calabi-Yau 3-folds. Eventually, one would like to understand

all these low-dimensional hybrid formulations in terms of a covariant 10-dimensional for-

malism — perhaps the (non-minimal) pure-spinor superstring. The formulation presented

here, although far from connecting to a covariant 10-dimensional string, sits naturally be-

tween the 6-dimensional type II string with 16 supercharges manifest and the 8-supercharge

type II description.

Besides the technical problem of understanding the relation between the various hybrid

strings, there seem to be quite a few applications/extensions of this approach. One such

application is the possibility, alluded to already in Siegel’s work [8], of tensoring together

two strings of the N = (2, 0) type to obtain an N = (2, 2) string with 16 supercharges, which

will be described by a combination of two projective parameters. Although the resulting

formulation is likely to give a partially on-shell description of superspace supergravity rather

than the elusive off-shell realization, it may nevertheless be a useful tool in the construction

of the latter. Irrespective of this hopeful attitude toward the construction of off-shell 16-

supercharge superspaces, such a formulation should relate to the existing partially on-shell

hybrid description of the 6-dimensional type II string on a K3 surface.

A second application relates to superstring field theory. One of the achievements of the

hybrid formalism has been the construction of a WZNW-like open superstring field the-

ory [18] and, more recently, a Chern-Simons-like N = 1 heterotic string string field theory

has been put forward [19]. One can try to use the open string version of the present paper

in the open string field theory formulation of [18] to give a new description of non-abelian

N = 2 gauge theories. A more ambituous goal is to use the explicit realization (2.9) of

the left-moving N = 2 algebra to plug into the heterotic string field theory of Berkovits,

Okawa, and Zwiebach [19] to yield the first closed string field theory with N = 2 super-

symmetry in the target space. The natural string field would then be a tropical superfield.

Again unfortunately, the projective formalism has at present not been sufficiently devel-

oped to simply write down the string field theory and some guess work has to be done as

the unconstrained prepotential formalism for Yang-Mills theory is not known in projective

superspace even though it has been known in 4|2-dimensional harmonic superspace for over

20 years [2].

Finally, a more concrete application which uses only on-shell information is the com-

putation of amplitudes using the present description. One important ingredient is the CFT

0-mode measure. The subtle point here is the left-moving measure. Since the new super-

space coordinates (θ̂, ˆ̄θ) are not related to the underlying RNS formalism it is natural to

assume that they do not participate in a physical amplitude. Furthermore, given the pro-

jective superspace description presented above, spacetime N = 2 supersymmetry will be
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realized through the projective superspace integral. We are thus led to propose that the

measure for the left-moving 0-modes is given by

〈θ2θ̄2j++ζ−1c∂c∂2c〉 = 1 (5.1)

where j++ is an su(2) current in the N = 4 topological algebra of the K3. We see once

again that ζ appears as the projective parameter.
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